Journal article
Annual Meeting of the Cognitive Science Society, 2017
Alice Gabrielle Twight Professor of Psychology & Education
(847)467-1272
Department of Psychology
Northwestern University
APA
Click to copy
Myers, M., & Gentner, D. (2017). Analogical Inferences in Causal Systems. Annual Meeting of the Cognitive Science Society.
Chicago/Turabian
Click to copy
Myers, Matthew, and D. Gentner. “Analogical Inferences in Causal Systems.” Annual Meeting of the Cognitive Science Society (2017).
MLA
Click to copy
Myers, Matthew, and D. Gentner. “Analogical Inferences in Causal Systems.” Annual Meeting of the Cognitive Science Society, 2017.
BibTeX Click to copy
@article{matthew2017a,
title = {Analogical Inferences in Causal Systems},
year = {2017},
journal = {Annual Meeting of the Cognitive Science Society},
author = {Myers, Matthew and Gentner, D.}
}
Analogical and causal reasoning theories both seek to explain patterns of inductive inference. Researchers have claimed that reasoning scenarios incorporating aspects of both analogical comparison and causal thinking necessitate a new model of inductive inference (Holyoak, Lee, & Lu, 2010; Lee & Holyoak, 2008). This paper takes an opposing position, arguing that features of analogical models make correct claims about inference patterns found among causal analogies, including analogies with both generative and preventative relations. Experiment 1 demonstrates that analogical inferences for these kinds of causal systems can be explained by alignment of relational structure, including higher-order relations. Experiment 2 further demonstrates that inferences strengthened by matching higher-order relations are not guided by the transfer of probabilistic information about a cause from base to target. We conclude that causal analogies behave like analogies in general—analogical mapping provides candidate inferences which can then be reasoned about in the target.